
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Utilizing Divide and Conquer Algorithm for Area

of Effect (AoE) Detection in Video Game Maps

Muhammad Adha Ridwan - 13523098
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: adharidwan2115@gmail.com , 13523098@std.stei.itb.ac.id

Abstract— This paper presents the utilization of divide and
conquer algorithm for determining which areas are affected by
Area of Effect (AoE) abilities in video games. Traditional
collision detection methods for AoE calculations often result in
performance bottlenecks when handling multiple entities
simultaneously. By implementing a divide and conquer approach,
we partition the game space into hierarchical regions, enabling
efficient elimination of entities outside the AoE radius before
performing detailed intersection tests. Our proposed algorithm
recursively subdivides the affected area into smaller quadrants,
reducing computational complexity from O(n) to O(log n) for
entity filtering.

Keywords— divide and conquer; area of effect; optimization;
video games.

I. INTRODUCTION

Modern video games increasingly rely on Area of Effect
(AoE) mechanics for engaging gameplay experiences.
However, determining which entities are affected by AoE
abilities has become a significant performance bottleneck as
game worlds grow more complex with hundreds or thousands
of interactive objects.

Traditional AoE collision detection employs brute-force
methods that check every entity against AoE boundaries,
resulting in O(n) complexity where n represents the total
number of game objects. This linear scaling leads to frame rate
drops in scenarios with high entity counts, particularly when
multiple AoE effects occur simultaneously in games like
MMORPGs and real-time strategy titles.

The challenge intensifies with diverse AoE shapes
including circular areas, rectangular zones, cone-shaped
attacks, and irregular polygons. Each variation requires
specialized intersection algorithms while maintaining real-time
performance constraints of a few milliseconds per calculation.

This paper proposes a divide and conquers approach to
optimize AoE collision detection by recursively partitioning
affected areas into smaller regions. This enables efficient
elimination of entities outside AoE boundaries before
performing detailed intersection tests, reducing computational
complexity from O(n) to O(log n). Our solution addresses the
need for scalable AoE processing systems that maintain real-

time performance while preserving accuracy required for fair
gameplay mechanics.

II. THEORETICAL FOUNDATION

A. Divide and Conquer Algorithm

The Divide and Conquer algorithm are an approach to
solving complex problems by breaking them down into
smaller sub-problems, solving each sub-problem separately,
and combining the results to obtain the final solution.

This algorithmic strategy is particularly effective for
problems that exhibit optimal substructure and overlapping
sub-problems, making it applicable to a wide range of
computational challenges from sorting and searching to
mathematical computations and optimization problems.

This approach consists of three main steps:

1) Divide

Break the problem into several sub-problems that are
similar to the original problem but smaller in size. The
goal is to create sub-problems that are ideally of
approximately equal size to ensure balanced workload
distribution. This step requires careful analysis to
identify the natural breaking points of the problem
structure.

2) Conquer
Solve each sub-problem either directly (if it has
reached a sufficiently small base case) or recursively
by applying the same divide and conquer approach.
The base case typically involves problems small
enough to be solved using straightforward methods
without further subdivision.

3) Combine

Merge the solutions of each sub-problem to form the
complete solution to the original problem. This step
often requires careful consideration of how partial
solutions interact and must be integrated to maintain
the correctness and efficiency of the overall algorithm.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The division step systematically breaks the problem into
smaller, more tractable sub-problems while preserving the
essential characteristics of the original problem. The
conquering step addresses each sub-problem through recursive
application of the algorithm or direct solution when the
problem size becomes manageable. Finally, the combining
step merges solutions from sub-problems into the
comprehensive final solution, ensuring that the integrity and
correctness of the solution are maintained throughout the
process.

B. Area of Effect in Video Games

Area of Effect (AoE) is a fundamental game mechanic
where abilities, spells, or attacks affect multiple targets within a
specified area rather than just a single target. This mechanic
has become essential in role-playing games (RPGs), real-time
strategy (RTS) games, multiplayer online battle arenas
(MOBAs), and first-person shooters (FPS), adding layers of
tactical depth through spatial gameplay and strategic
positioning.

There are several distinct types of AoE mechanics that
serve different tactical purposes. Targeted AoE abilities require
players to select specific locations for effects to occur, such as
fireball spells or grenade firearms that explode at chosen
positions. Point-Blank AoE (PBAoE) effects originate from the
character's current position and radiate outward in circular
patterns, like explosive shockwaves or aura-based abilities that
buff allies or debuff enemies. Cone AoE abilities project
forward in fan-shaped areas, commonly seen in breath weapons
or shotgun blasts that affect multiple enemies in front of the
player. Line AoE effects travel in straight paths, hitting all
targets along their trajectory, such as lightning bolts or piercing
arrows. Chain AoE abilities begin with a primary target and
jump to nearby secondary targets, like chain lightning or
spreading plague effects that can devastate clustered enemies.

Figure 1. Point-Blank AoE

Figure 2. Cone-Shaped AoE

Across different game genres, AoE mechanics serve varied
but crucial roles. In RPGs, they are essential for managing
encounters with multiple enemies, with mage characters
typically specializing in devastating area spells that can turn the
tide of battle. RTS games heavily utilize AoE through artillery
units and siege weapons that can devastate clustered enemy
forces, making formation and unit positioning crucial strategic
elements. MOBAs feature sophisticated AoE systems where
team fight positioning and coordinated ability usage often
determine match outcomes, with ultimate abilities frequently
featuring powerful area effects. FPS games incorporate AoE
through grenades, explosive weapons, and special abilities that
add tactical depth beyond traditional point-and-shoot
gameplay.

C. Quadtree Partitioning

A quadtree is a tree-based n-ary data structure where each
internal node of the quadtree has exactly 4 children. Quadtrees
are commonly used to recursively divide 2-dimensional space
into 4 regions or quadrants. The height of a quadtree adjusts
according to the level of detail of information stored in each
node. If information in a particular node can still be detailed
further, it will create 4 child nodes that store clearer details
than the original parent node.

Quadtrees are commonly implemented in various

processes including:
1) Image Rendering.
2) Image Proccesing.
3) Connection Clustering.
4) 2-dimensional region indexing.
5) 3-dimensional modeling of terrain data.
6) Sparse data storage.
7) Fractal analysis.

The quadtree represents a data structure that is extremely

useful because computers always use binary systems in
performing all operations. Quadtrees represent the simplest
form of 2-dimensional representation by computers since the
number of children in each node totaling 4 can represent 2
values in 2 directions/dimensions.

Figure 3. Quadtree Representation

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

D. Video Games Components

Video games are complex interactive systems composed of
various fundamental components that work together to create
engaging player experiences. These components form the
foundation of game architecture and determine how players
interact with the virtual world. Understanding these core
elements is essential for game development, design analysis,
and technical implementation.

1) Maps

Maps represent the spatial environment and world
structure within video games, serving as the
foundational framework where all gameplay activities
occur. They define the boundaries, terrain, and
navigable areas that players can explore and interact
with. Maps can range from simple 2D grids in classic
arcade games to complex 3D environments in modern
open-world titles.

Figure 4. Video Games Map Example

2) Entitiy and Objects

Entities and objects represent the interactive elements
within the game world, including characters, items,
environmental features, and dynamic elements that
players can manipulate or interact with. These
components bring life and functionality to the game
environment, creating opportunities for player
engagement and meaningful gameplay interactions.

Figure 5. Video Games Entity and Object Examples

III. PROBLEM ANALYSIS

A. Problem Definition and Scope

1) Core Problem Statement
Area of Effect (AoE) detection in video games

represents a fundamental computational challenge in

real-time interactive systems. The problem can be
formally defined as follows:

Given:
 A set of entities E = {e₁, e₂, ..., eₙ} where

each entity eᵢ has position pᵢ ∈ ℝ³ and radius
rᵢ ∈ ℝ⁺.

 An AoE effect A with center position c ∈ ℝ³
and effect radius R ∈ ℝ⁺

 A time constraint Tmax representing
maximum allowable computation time per
frame.

Find:
 All entities eᵢ ∈ E such that the distance

d(pᵢ, c) ≤ R + rᵢ, computed within time
constraint Tmax

2) Problem Scope and Context
Modern video games demand increasingly

sophisticated AoE systems with hundreds to thousands
of entities interacting simultaneously. Common
scenarios include:

1. Massively Multiplayer Online Games
(MMOs): 100+ players with multiple AoE
abilities active.

2. Real-Time Strategy (RTS) Games:
Hundreds of units affected by area
bombardments.

3. Action RPGs: Complex spell interactions
affecting multiple enemy groups.

4. Battle Royale Games: Large-scale
environmental effects affecting many
players.

AoE detection typically occurs multiple times per
frame, making it one of the most performance-critical
systems in game engines. Poor performance directly
impacts:

 Frame rate stability.
 Input responsiveness.
 Overall gameplay experience.
 Battery life on mobile platforms.

3) Mathematical Problem Formulation
The AoE detection problem can be modeled as a

range query problem in computational geometry:
 Spatial Query Definition: For a circular

range query with center c and radius R, find
all points p ∈ P such that: ||p - c||₂ ≤ R.

 Extended Entity Model: Considering
entities with non-zero radius, the condition
becomes: ||pᵢ - c||₂ ≤ R + rᵢ

 Multi-dimensional Considerations: While
many games operate in 2D or 2.5D space,
full 3D AoE detection requires:
- 3D distance calculations: √[(x₁-x₂)² +

(y₁-y₂)² + (z₁-z₂)²].
- Spherical intersection tests rather than

circular.
- Increased computational complexity.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Approaches

1) Brute Force Approach
The most naive and straightforward approach is to

just iterate all blocks or units of the maps to find which
entities or objects are inside AoE scope.

Although simple, this approach has weakness likes:
 Linear Scaling: Performance degrades

linearly with entity count.
 Cache Inefficiency: Random memory

access patterns.
 Redundant Calculations: No spatial

locality exploitation.
 No Early Termination: Must check every

entity regardless of spatial distribution.
Analyzing the algorithm to find the complexity of

this approach:
 Time Complexity: O(n) per query, where n

is the number of entities.
 Space Complexity: O(1) additional space.
 Total Complexity: O(m×n) for m

simultaneous AoE effects.
2) Grid-Based Approach

Another approach is to divide the game world into a
regular grid where each cell contains information about
objects and entities within its bounds.

While keeping the approach relatively simple, this
approach still has weakness like:

 Fixed Resolution: Grid size affects both
memory usage and query performance.

 Boundary Issues: AoE effects spanning
multiple cells require checking adjacent cells.

 Non-uniform Distribution: Poor performance
when entities cluster in few cells.

 Memory Overhead: Sparse worlds waste
significant memory.

Analyzing the algorithm to find the complexity of
this approach:

For a world of size W×H divided into cells of size c×c:
 Grid cells required: (W/c) × (H/c).
 Memory usage: O((W×H)/c²).
 Average entities per cell: n×c²/(W×H).
 Time Complexity: O(k + Σᵢ entitiesᵢ) where k is

number of intersecting cells.
3) Quadtree Approach

 Another approach leveraging divide and conquer
paradigm is to use spatial quadtree partitioning, where
its recursively subdivides the space into quadrants for a
2D map based on the entities and objects distribution.

 This approach still has weakness like:

 Dynamic Balancing: Maintaining optimal tree
structure as entities move.

 Update Overhead: Frequent rebuilding for
highly dynamic scenarios.

 Depth Management: Preventing excessive
subdivision.

 Memory Fragmentation: Dynamic node
allocation/deallocation.

 Analyzing the algorithm to find the complexity of this
approach:

 Recursively subdivides space into quadrants.

 Uses spatial bounds to quickly eliminate entire
regions

 Time Complexity: O(log n + entities in
intersecting nodes)

IV. IMPLEMENTATION

We will keep the implementation simple by using 2D Map
and 2D Entities.

Programming languages chosen for implementation is
Python with libraries such as pygames making the development
phases of the system to be fast and also allowing to design the
system as modular.

A. System Architecture

The application will be based on two layers, application
layer and logic layers, as shown below:

Figure 6. System Architecture

B. Spatial Data Structure

1) Grid
 def grid_distribution(num_entities, width, height,
margin=10):
 entities = []

 aspect_ratio = width / height
 cols = int(math.sqrt(num_entities * aspect_ratio))
 rows = int(num_entities / cols)

 while cols * rows < num_entities:
 if cols <= rows:
 cols += 1
 else:
 rows += 1

 x_spacing = (width - 2 * margin) / cols
 y_spacing = (height - 2 * margin) / rows

 entity_count = 0
 for row in range(rows):
 for col in range(cols):
 if entity_count >= num_entities:
 break

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 base_x = margin + col * x_spacing + x_spacing
/ 2
 base_y = margin + row * y_spacing + y_spacing
/ 2

 offset_x = random.uniform(-x_spacing * 0.3,
x_spacing * 0.3)
 offset_y = random.uniform(-y_spacing * 0.3,
y_spacing * 0.3)

 x = base_x + offset_x
 y = base_y + offset_y

 x = max(margin, min(width - margin, x))
 y = max(margin, min(height - margin, y))

 entities.append(Entity(x, y))
 entity_count += 1

 if entity_count >= num_entities:
 break

 return entities

2) Quadtree
class QuadTreeNode:
 def __init__(self, x, y, width, height, max_entities=10,
max_depth=5, depth=0):
 self.x = x
 self.y = y
 self.width = width
 self.height = height
 self.max_entities = max_entities
 self.max_depth = max_depth
 self.depth = depth
 self.entities = []
 self.children = []
 self.divided = False

 def contains(self, entity):
 return (self.x <= entity.x < self.x + self.width and
 self.y <= entity.y < self.y + self.height)

 def intersects_circle(self, center_x, center_y, radius):
 # Find closest point on rectangle to circle center
 closest_x = max(self.x, min(center_x, self.x +
self.width))
 closest_y = max(self.y, min(center_y, self.y +
self.height))

 # Calculate distance from circle center to closest
point
 distance = math.sqrt((center_x - closest_x)**2 +
(center_y - closest_y)**2)
 return distance <= radius

 def subdivide(self):
 half_width = self.width / 2
 half_height = self.height / 2

 self.children = [
 QuadTreeNode(self.x, self.y, half_width,
half_height, self.max_entities, self.max_depth, self.depth +
1),
 QuadTreeNode(self.x + half_width, self.y,
half_width, half_height, self.max_entities, self.max_depth,
self.depth + 1),
 QuadTreeNode(self.x, self.y + half_height,
half_width, half_height, self.max_entities, self.max_depth,
self.depth + 1),
 QuadTreeNode(self.x + half_width, self.y +
half_height, half_width, half_height, self.max_entities,
self.max_depth, self.depth + 1)
]
 self.divided = True

 def insert(self, entity):
 if not self.contains(entity):
 return False

 if len(self.entities) < self.max_entities or
self.depth >= self.max_depth:

 self.entities.append(entity)
 return True

 if not self.divided:
 self.subdivide()

 for child in self.children:
 if child.insert(entity):
 return True
 return False

 def query_range(self, center_x, center_y, radius,
results, comparisons_counter):
 if not self.intersects_circle(center_x, center_y,
radius):
 return

 for entity in self.entities:
 comparisons_counter[0] += 1
 distance = math.sqrt((entity.x - center_x)**2 +
(entity.y - center_y)**2)
 if distance <= radius:
 results.append(entity)

 # Recursively check children
 if self.divided:
 for child in self.children:
 child.query_range(center_x, center_y, radius,
results, comparisons_counter)

 def draw(self, screen, color=GRAY):
 pygame.draw.rect(screen, color, (self.x, self.y,
self.width, self.height), 1)

 if self.divided:
 for child in self.children:
 child.draw(screen, color)

C. Detection Algorithm

1) Brute Force
class BruteForceDetector:
 def __init__(self, entities):
 self.entities = entities
 self.name = "Brute Force"
 self.color = RED

 def detect_targets(self, center_x, center_y, radius):
 targets = []
 comparisons = 0

 for entity in self.entities:
 comparisons += 1
 distance = math.sqrt((entity.x - center_x)**2 +
(entity.y - center_y)**2)
 if distance <= radius:
 targets.append(entity)

 return targets, comparisons

 def update(self):
 pass

 def draw_structure(self, screen):
 pass

2) Grid
class GridDetector:
 def __init__(self, entities, world_width, world_height,
cell_size=50):
 self.entities = entities
 self.world_width = world_width
 self.world_height = world_height
 self.cell_size = cell_size
 self.cols = math.ceil(world_width / cell_size)
 self.rows = math.ceil(world_height / cell_size)
 self.name = "Grid-Based"
 self.color = BLUE

 self.grid = [[[] for _ in range(self.cols)] for _ in

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

range(self.rows)]
 self.update()

 def get_cell(self, x, y):
 """Get grid cell coordinates for a point"""
 col = int(x // self.cell_size)
 row = int(y // self.cell_size)
 col = max(0, min(self.cols - 1, col))
 row = max(0, min(self.rows - 1, row))
 return row, col

 def update(self):
 # Clear grid
 for row in self.grid:
 for cell in row:
 cell.clear()

 # Place entities in grid cells
 for entity in self.entities:
 row, col = self.get_cell(entity.x, entity.y)
 self.grid[row][col].append(entity)

 def detect_targets(self, center_x, center_y, radius):
 targets = []
 comparisons = 0

 min_col = max(0, int((center_x - radius) //
self.cell_size))
 max_col = min(self.cols - 1, int((center_x + radius)
// self.cell_size))
 min_row = max(0, int((center_y - radius) //
self.cell_size))
 max_row = min(self.rows - 1, int((center_y + radius)
// self.cell_size))

 # Check entities in relevant cells
 for row in range(min_row, max_row + 1):
 for col in range(min_col, max_col + 1):
 for entity in self.grid[row][col]:
 comparisons += 1
 distance = math.sqrt((entity.x -
center_x)**2 + (entity.y - center_y)**2)
 if distance <= radius:
 targets.append(entity)

 return targets, comparisons

 def draw_structure(self, screen):
 """Draw grid lines"""
 for i in range(self.cols + 1):
 x = i * self.cell_size
 pygame.draw.line(screen, LIGHT_GRAY, (x, 0), (x,
self.world_height))

 for i in range(self.rows + 1):
 y = i * self.cell_size
 pygame.draw.line(screen, LIGHT_GRAY, (0, y),
(self.world_width, y))

3) Quadtree

class QuadTreeDetector:
 def __init__(self, entities, world_width, world_height,
max_entities=10):
 self.entities = entities
 self.world_width = world_width
 self.world_height = world_height
 self.max_entities = max_entities
 self.name = "Quadtree"
 self.color = GREEN
 self.root = None
 self.update()

 def update(self):
 self.root = QuadTreeNode(0, 0, self.world_width,
self.world_height, self.max_entities)

 for entity in self.entities:
 self.root.insert(entity)

 def detect_targets(self, center_x, center_y, radius):

 targets = []
 comparisons = [0] # Use list to make it mutable for
nested function

 self.root.query_range(center_x, center_y, radius,
targets, comparisons)

 return targets, comparisons[0]

 def draw_structure(self, screen):
 if self.root:
 self.root.draw(screen, LIGHT_GRAY)

D. Performance Benchmark

class PerformanceTracker:
 def __init__(self):
 self.reset()

 def reset(self):
 self.measurements = {
 'Brute Force': [],
 'Grid-Based': [],
 'Quadtree': []
 }

 def add_measurement(self, method, time_taken,
comparisons):
 if len(self.measurements[method]) >= 60: # Keep last
60 measurements
 self.measurements[method].pop(0)
 self.measurements[method].append((time_taken,
comparisons))

 def get_average_stats(self, method):
 if not self.measurements[method]:
 return 0, 0

 times = [m[0] for m in self.measurements[method]]
 comparisons = [m[1] for m in
self.measurements[method]]
 return sum(times) / len(times), sum(comparisons) /
len(comparisons)

V. TESTING AND ANALYSIS

The detection approach will be tested against five different
entities distribution, uniform, clustered, sparse, and ring.

This different approach is used for finding which is perfect
for each distribution while also finding each approach
weaknesses.

Each detection approach all has the same radius of 200 and
2000 entities scattered around the map.

A. Uniform Distribution

1) Brute Force

Figure 7. Brute Force on Uniform Distribution

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

2) Grid

Figure 8. Grid on Uniform Distribution

3) Quadtree

Figure 9. Quadtree on Uniform Distribution

B. Clustered Distribution

1) Brute Force

Figure 10. Brute Force on Clustered Distribution

2) Grid

Figure 11. Grid on Clustered Distribution

3) Quadtree

Figure 12.Quadtree on Clustered Distribution

C. Sparse Distribution

1) Brute Force

Figure 13. Brute Force on Sparse Distribution

2) Grid

Figure 14. Grid on Sparse Distribution

3) Quadtree

Figure 15. Quadtree on Sparse Distribution

D. Ring Distribution

1) Brute Force

Figure 16. Brute Force on Ring Distribution

2) Grid

Figure 17. Grid on Ring Distribution

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

3) Quadtree

Figure 18. Quadtree on Ring Distribution

Through the testing, we find that for each distribution, it
has one approach that suited for the best.

Uniform distribution has Grid approach perform the best.
Because grid accessed each grid with O(1) and each grid is
uniform, the comparison would be fast.

Clustered distribution has Quadtree approach perform the
best. Because there are many empty cells, quadtree didn’t split
it making the comparison fewer thus making it faster.

Sparse distribution has Grid approach perform the best,
because some of the cells are not fully filled but also not
empty, making quadtree approach to split to few inefficient
nodes.

Ring distribution has Grid approach perform the best with
the same reason as above.

Each method handle detection differently, making each has
their own pros and cons. Based on the testing and data, Grid
based approach perform the best between three of them,
making grid approach flexible to multiple distribution pattern.

VI. CONCLUSION

The testing results demonstrate that Grid-based
partitioning emerges as the most versatile and consistently
performing algorithm for AoE detection across diverse
spatial distributions. While each algorithm showed optimal
performance under specific conditions—with Quadtree
excelling in clustered distributions due to its ability to avoid
subdividing empty regions—the Grid approach maintained
superior or competitive performance across all tested
scenarios.

The key findings reveal that:
 Uniform distributions favor Grid partitioning due to

O(1) access time and uniform cell utilization
 Clustered distributions benefit from Quadtree's

adaptive subdivision, reducing unnecessary
comparisons in sparse areas

 Sparse and ring distributions perform best with
Grid partitioning, as partial cell occupancy renders
Quadtree's subdivision strategy inefficient

The Grid-based approach's consistent performance stems
from its predictable access patterns and stable computational
complexity, making it particularly suitable for real-time game
environments where consistent frame rates are crucial. While
Quadtree offers theoretical advantages for highly clustered
data, its performance degrades significantly when dealing with
partially filled regions, limiting its practical applicability in
dynamic game scenarios.

Therefore, for implementing AoE detection systems in
video games where object distributions may vary dynamically,
the Grid-based divide-and-conquer approach provides the
optimal balance of performance, predictability, and flexibility
across different spatial distribution patterns, making it the
recommended solution for practical game development
applications.

VIDEO LINK AT YOUTUBE

https://youtu.be/-yubB5M-2oQ

REPOSITORY LINK

https://github.com/adharidwan/Makalah-IF2211.git

ACKNOWLEDGMENT

The completion of this paper could not have been possible
without the aid of all IF2211 lecturers, especially Dr. Ir.
Rinaldi Munir who has taught the K02 for the Algorithm
Strategy. The writer has learned a hefty amount of information
in the process of developing this paper.

 REFERENCES
[1] Adams, E., & Dormans, J. (2012). “Game Mechanics: Advanced Game

Design”. New Riders

https://www.peachpit.com/store/game-mechanics-advanced-game-
design-9780321820273

[2] J. Juul, "The game of video game objects: A minimal theory of when we
see pixels as objects rather than pictures," in Extended Abstracts of the
2021 Annual Symposium on Computer-Human Interaction in Play (CHI
PLAY '21), New York, NY, USA: Association for Computing
Machinery, 2021, pp. 376–381,

https://dl.acm.org/doi/abs/10.1145/3450337.3483449

[3] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-
Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf, Accesed 22 June
2025

[4] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/08-
Algoritma-Divide-and-Conquer-(2025)-Bagian2.pdf, Accesed 22 June
2025

[5] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/09-
Algoritma-Divide-and-Conquer-(2025)-Bagian3.pdf, Accesed 22 June
2025

[6] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/10-
Algoritma-Divide-and-Conquer-(2025)-Bagian4.pdf, Accesed 22 June
2025

STATEMENT

Hereby, I declare this paper I have written with my own work,
not a reproduction or translation of someone else’s paper, and
not plagiarized.

Bandung, 24 Juni 2025

Muhammad Adha Ridwan 13523098

